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Chapter 8

Waves and Interference

Where there’s interference, there’s a wave.

Stones, electrons, cars, and planets @ &

have something in common. At least we treated
them in the same way. For us, they were all
compact hunks of matter, lumps. We mostly

cared about where they were and how they
moved. Their particular shapes and sizes were
irrelevant. At least in our simple examples, we
could consider them to be concentrated at some
spot because they occupied only a small part
of the region we had to consider. We could

treat them as if they were "particles.”

We’ll now deal with a different kind of
thing, a wave. A wave spreads out over a
significant part of the region we must
consider.

Why a whole chapter on waves? They are an important part of
our environment. Light is a wave of electromagnetic field, and sound is
a wave of air pressure. Since all we ever see is light, and all we ever
hear is sound, most of what we know is carried to us by waves. But we
here delve into the nature of waves because the difference between
extended waves and concentrated lumps, "particles,” is at the heart of
the enigma posed by quantum mechanics'. -

We will have to ponder how a physical object can be both
spread out over a wide region and also be totally concentrated in one
spot. Bigger than a breadbox and smaller than an atom! Impossible, of
course. But physics is forced to explore such "impossibilities”.

How can we distinguish between a compact object and a spread
out wave? Simply by looking you can tell that the crests and troughs of
ocean waves extend widely. In contrast, the barrel floating on them is
compactly in one place. You can’t quite do that with the smaller things
we will deal with. What is light, for example? A stream of little

particles or a wave?

1
Some lilke to call it the "wave-particle duality."
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Until a light beam contacts an object, which could exerted a
"force," the light travels in a straight line. It reflects at an angle equal
to its incident angle like a bouncing ball. Newton thus declared light to
be a stream of "corpusjitles,” little bodies, or particles. His
overwhelming stature made that the dominant view until the turn of the
19th Century when the wave nature of light conclusively demonstrated.
How? The trick is "interference." Since it’§ the main point of this
chapter, let’s look at the essence of it now and go into detail later.

Sunlight comes straight through a
window and illuminates a region the size and
shape of that window on the opposite wall.

However, light coming through a very narrow slit

does something different: it spreads out widely to Bt
make a broad, though dim, patch on the wall’.
Suppose we now open a second narrow slit close
to the first. Twice as much light now comes
through to the opposite wall.

If tiny impacting particles caused the
illumination, twice as many falling on each spot
should cause twice the brightness--essentially
everywhere. But that’s not what happens. We
see instead a series of bright and dark bands.
Some regions indeed got brighter, but some
places that were illuminated by the first slit are
now dark. The added light from the second slit
cancels some of the light from the first. Light
plus light can add up to dark!

It’s hard to conceive of such a cancellation with a stream of
individual particles. Raindrops plus more raindrops never make dry.
With light a wave, however, such "interference” is expected. Let’s
roughly say why.

A dark region comes about because the waves arriving there
from one slit have travelled a different distance than the waves from the
other. In that case, it is possible that all the crests from one slit arrive
at just the same time as do the troughs from the other. Crests are
positive displacements of electric field and troughs are negative. Crests
plus troughs can therefore add up to zero. Waves from one slit can
cancel the waves from the other. Particles can’t. More than a half-

2
This spreading of waves will be discussed later. one could also imagine this to happen with particles which bounce

off the edges of the slit.
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century after Newton’s death, Thomas Young’s interference experiments
convincingly demonstrated light to be a wave.

We now discuss some properties of waves. We then get back to
the main issue: interference, and, eventually, the paradox posed.

Properties of waves

The waves we talk about extend widely and vary periodically in
time and space. "A wave" for us is a large number of crests and troughs,
not a single crest. You might use the term, "a series of waves" or a
"wave train", for what we mean. But we’ll just call the entire structure
"a wave".

. - o
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It’s helpful to visnalize a specific case. So think of a long,
cotton rope held taut. The person on the left gives the rope a series of
vertical shakes, and a wave moves down the rope to her partner.

W
W hat is moving from her to him? Clearly not the cotton fibers
of the rope. He can receive waves for a long time and the rope gets no

closer to him. The thing that moves is the vertical displacement of
the cotton fibers, the position of the crests of the wave.

We may talk of a wave’s velocity, its "amplitude”, its
"wavelength®, its "frequency”, and its "period.” Everything we say about
these properties holds for waves on a rope and for all waves.

Amplitude: If the person transmitting
the wave shakes the rope harder (not more times ow»\?\\

kute
per second, just with a bigger swing) the- k’b
displacement will be bigger. The distance from \
the original straight position of the rope up to 2 ' '

crest is called the "amplitude” of the wave. This /
is the same as the distance down to the trough.
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Velocity: The velocity of a wave is the . . —>V
speed with which it moves, down the rope for — VN ANAN e

example. We can look at one of the crests, and

see how far it travels in a given time, and I ANANNVVN—

v = AX/At. -
NXIA ~x | { AL
ladex
Wavelength: The distance from one
crest to another is the "wavelength”. It’s also the wau,g\c“&\l\
distance between the troughs. The distance from P -
a crest to a trough is a half-wavelength. The \‘ PN -

Greek letter lambda A is the usual symbol for
wavelength. One wavelength encompasses one
complete "cycle” of the wave in space. /\
7 \/ -\
Frequency: "Frequency" tells how

frequently something happens. Someone
standing near the middle of the rope could count -
the crests as they pass. The number of crests-- ' :
the number of complete cycles--of the wave going J\/\/\I\W
by per second is the "frequency” f of the wave’. ’
We can specify frequency in cycles per second.
However, the unit "cycle per second” is usually @ -
j: 5%&““\”&‘

called a "hertz," abbreviated "hz". 60 cycles per
second is 60 hertz’.

Period: Instead of telling the frequency
in hertz or the number of cycles per second, you 5‘<°{ 5*3“
can give the same information by telling the time v -
for a single cycle, the "period" T of the wave. v
If something happens 5 times a second, the time W
between occurrences, the period, is one fifth of a

second. A wave with frequency 5 hz has a period
of 1/5 seconds. T = 1/f. S %@

The f. A .« relation: We now derive the simple relation
between frequency, wavelength, and velocity. It holds for all waves,
water, rope, sound, light, whatever. '

3
In the case of sound, freguency determines the pitch. For light, frequency determines the color.

4
The hertz honors Heinrich Hertz, the discover of electromagnetic waves. Appropriately, "hertz® is German for Yheart, "
and a healthy athletic heart beats about once per second, or one hertz.
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_ Suppose an observer starts his

stopwatch as a crest passes his nose and stops it
as the next crest passes one cycle later. His
watch would read the time T, the "period” of the
wave. Since the distance between the two crests
is a wavelength, the wave moved omne wavelength,
A\ meters, in T seconds.

The velocity of the wave is therefore

, Ax__x
Vo= ot T 8.1

Or, since T = 1/f,
v = a¥

This important relationship is true for all waves.

8.2

~ Waviness: I won’t define "waviness" precisely. We all sort of.
know what it means. When or where the sound is loud, the "waviness" of
the sound waves is large. When or where the light is bright, the
waviness of the electric field is large. The horizontal axis below could

be either time or distance.

The loudness of sound and the brightness of light are
proportional to the energy in the wave. And the energy of a wave is
proportional to the square of the amplitude. A good mathematical
measure of waviness is therefore the square of the amplitude averaged
over a few wavelengths in space or periods in time. "Waviness" is not a
standard technical term, but itis a useful one. We will use it a good

deal.

The representation of waves

How do we picture waves on our pages? Waves on a rope were
shown as the actual shape of the rope as the wave travelled. For water
waves, such a picture would be as they were seen through the flat glass
side of an aquarium tank. Such diagrams are also plots of the height of
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the rope or water as a function of horizontal distance. /Z//"(/f%/;?;?
. ,»/', = //' y /// ’

_ Mathematically, we would be plotting the height H of the water
surface versus the distance x, or H(x). Since the waves move, 2
particular graph would be would be for a particular time t. It would
therefore be more complete to write H(x,t). Here’s a specific plot as an
example, a graph of height at the time t.= 6 seconds, or H(x,6).
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We can see, for example that at t = 6 s, the height of the water
at the distance x = 3 is H(3,6) = 0.2 m. At a later time this structure,
or "wave packet,” might move to the right and perhaps broaden out.

Just as Newton’s equation of motion F = Ma goverans the
change of position and velocity of a "particle,” a wave equation governs
the behavior of a wave. Such an equationis a "partial differential
equation,” a rather complex mathematical object. The only point we
need is that if the form of a wave at an initial time is given, this
equation gives the form at a later time. If we feed in the initial
conditions and turn the mathematical crank, the

wave equation gives the final conditions. The B'L n 54 W
wave equations for waves of water, light, and — = -—\—1 —
sound are all basically similar, and just for fun, DX Ve At

we write one out.

As the function H(x,t) represented the height of the water
surface, for an electromagnetic wave the similar equation could be in
terms of the electric field E(x,t). For sound, the wave equation would
deal with the variations of air pressure P(x,t).

Crest line representation of waves:
Sometimes we will find it convenient to represent
waves in another way. Instead of a plot of the
height of the water surface as a function of
distance, we can show the waves in two

X
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dimensions. We can picture waves as we might
see ocean waves-by looking down from an
airplane. We represent the crests as straight

lines.

The crests are not always straight lines.
From a stone dropped into a pond wave crests
radiate as circles. We could create a continuous
radiating circular pattern of crests and troughs
by shoving a stick up and down in the water.

This representation of wave
electromagnetic waves Or waves of any
not being able to show the precise s
represent them in two dimensions.

Density representation of w
two dimensional water surface. T
talk of are in three dimensional space.
dimensional, present a good mode
understanding in their own right.

Air, or any gas, consists of a vast
number of molecules in rapid motion bouncing
against each other and any walls they encounter.
They move at the speed of a bullet. As each
molecule bounces off a wall, it gives the wall a
tiny outward kick. The average of all these kicks
is the pressure exerted on the wall.

Air at its normal pressure exerts fifteen pounds per square
h square foot. The only

hat the air on the outside

inch on a wall, about a ton of force on eac
reason our closed rooms don’t explode is t
exerts an equal force in the other direction.

The diaphragm of a loudspeaker
launches a sound wave by its rapid back and forth
motion. As it moves forward, it compresses the
air molecules in its way. (We represent such a
region of higher pressure and density by a denser
shading.) These compressed molecules now push
against those to the right of them, and a region
of higher pressure propagates away at the speed
of sound.
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(Those molecules in the vicinity of the
speaker do not, -of course, move far. The analogy
is to the locomotive that suddenly shoves against -

the long train. The car it bumped stays more or 1 :'ng} et

less put, it’s the jolt that moves rapidly down the P e e

train.) ARV T P

| RN S ‘\’, O
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its original position, molecules fill the space it U - oo

vacates. This low pressure region now moves to

follow the high pressure region propagating

ahead of it. As the diaphragm vibrates back and _ S a
forth, alternating regions of high and low o T e RS
pressure, the sound wave, moves out. RS
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Close to the source of the sound, the
loudspeaker, the waves radiate out in large
hemispheres as illustrated. However, the sound
wave we show only in two dimensions actually
exists in three. It’s trick to sketch that. Butlet ¥ \
me do it (sort of) for an especially simple case. \

P o

o
R A

Very far from the source of the waves the hemisphere is large,
and the surface of the wavefront is almost flat over a considerable
region. The wave surface as it advances toward an observer (or some
structure) is essentially a flat plane. We call it a "plane wave.” I .
attempt a three dimensional picture of three advancing high density “}:
regions (crests?) of such a plane wave as rectangular boxes. -
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Superposition of waves

: Interference depends on two waves coming simultaneously to
the same place. They superpose’ on each other--their effects just add.
Let’s look at this for the simple situation of waves moving along a taut

rope. . °
1 =k
What if both rope-holders transmit
identical waves down the rope at the same time?

Each wave causes a displacement of the

rope as if the other were not there. What could %MN\_____,\,\,\_%
be simpler? Each wave goes its merry way as if it

were alone. They just pass through each other in

the middle of the rope.

<« —»
i———/\/\/‘ ANAN \2_

What is the situation in the middle as

the two waves overlap? As each wave

independently displaces the rope, their

displacements at each point just add. A crest of

one occurring at the same point as the crest of / N\ ™\

another identical wave produces a displacement ) ' :

of twice one crest--double the amplitude. Two +

troughs would produce a downward displacement [\ /\

double that of a single trough. At the instant the "

crests and troughs of two passing waves

coincided, an amplitude twice that of 2 single Z\ |
wave would exist. We could say that the two

waves were "in phase" with each other.

At another special time as the waves /\ /\

pass through each other, the crests of one will all <
occur atop the troughs of the other. Positive +
displacements of crests will add to the negative /\
displacements of troughs. There will be, at this A4 \/
instant, zero net displacement for these two \

identical waves which are "out of phase” by

exactly a half wavelength. S —

5
We earlier spoke of “superposition“ in discussing two simultaneous and independent motions, vertical and horizontal.

Each happened as if the other were not there. It is mach the same with two waves whose effects just add.

193
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At times in between these two special [\v/\
cases, the resultant displacement would be more 4+
than zero, but less than twice the single wave
amplitude. : \ /\
\/“ -
Standing waves: Let’s think more of the ' 5_ -

middle of the rope as the waves pass through
each other? (Assume waves are passing through
each other for a long time.) Looking at the
region where the waves overlapped, we would see
certain places where the rope didn’t move at all.
Half way between these "nodes”, the rope would
oscillate with a large amplitude. (You can prove

this to yourself by considering two passing waves ‘%@.—
at various times. Our diagrams on the right show 1 1\ K~
this for three such times.) This motion in which woles .
the crests change to troughs and back to crests,

with no displacement of crests along the
rope, is called a "standing wave".

We don’t really need a person sending .
a wave to the left. If the rope were just tied to a év\/\/\
wall, the wave sent to the wall would be
reflected, and in the region where the incident <
and reflected wave overlapped we would have a ﬁ\' \/
standing wave.

=
N

It is also possible to have a standing - v

wave on a rope fastened tautly between two rigid a\\ N 'F’
supports. If we displaced the center of such a e
rope, it will continue to vibrate so that the

standing wave is exactly one half-wavelength

between supports. After all, both rigidly held

ends must be nodes. A guitar string vibrates in

this fashion®.

There are other possible ways, or
"modes", in which a taut rope with fixed ends can $
vibrate. For example, it can move so that two Voo
halves move in opposite directions with a node in -

6 R
Since the distance between the supports (or to a point where the string is held against a fret) is just \/2, and
since f = v/ \, the spacing between supports determines the fregquency (or pitch) of the string. £ also depends on Vv, which in
turn is determined by both the mass and the tension of the string.
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the middle. Since the wavelength is here half as
great as in the previous "fundamental mode”, the
frequency is twice as great. (See Equation 8.2.)
In fact, the string can vibrate with any integral - ‘T ‘ 'l‘\ —
number (1, 2, 3, etc.) of half-wavelengths
between the supports. Each of these is a _
vibration at a different frequency. Such modes
of vibration are called "resonances”. The modes
with frequency greater than the fundamental are
the "overtones” in a musical instrument. '

\

\
\
J

/

\

/
N

A taut string can actually vibrate in
many of its modes at the same time. In a string
instrument, these overtones give a richmess to the
sound. At any one instant, a rope vibrating
simultaneously in a number of modes can have an
arbitrarily complex shape.

Pulses

I said that when we speak of a wave, we mean a long train of
crests and troughs. Sometimes that’s not so. A single quick snap of the
rope will send a pulse of vertical displacement down the rope. It can
reflect off the end of the rope fixed to the wall. It "bounces” off that
pegged end much as a ball might bounce off the wall.

i A 2

The pulse is governed by a wave equation, and, strictly
speaking it is a wave. However, does the pulse have a frequency or a
wavelength? No, it doesn’t have a single frequency or wavelength.
Like the complex shape which results when a taut rope is vibrating in
many modes at the same time, a pulse corresponds to a wide range of
wavelengths and frequencies. (We’ll see this more clearly later.)
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Interference of waves

, We are now ready to discuss interference--the main issue of
this whole chapter. Not only is interference characteristic of waves, it is
the touchstone for a wave: if it interferes, it’s a wave. Even if we
don’t see the actual crests and troughs of sound or light, interference is
convincing evidence that they are waves. Let’s look at the details of -
interference closely enough to see why'.

It is actually the interference of light waves and matter waves
which will be important to us. But water waves are more familiar, and
easier to visualize. The interference phenomena we discuss are the
same for all waves. So let’s talk water for now.

Suppose the breakwater for a harbor has two entry ports, A
and B, each of them small compared to the wavelength of the impinging
waves. As the waves from outside raise and lower the water in the small
openings, waves will radiate from each of them as semicircles. The
waves from one opening will just superpose upon the waves from the
other. At one time the crests from each will be as shown below. In one
picture we draw both sets of crests independently of each other, as if
the other did not exist. This, of course, is not what would be seen from
an airplane flying overhead. Looking down on hte surface of the water,
you would see the actual surface of the water, the sum of the two sets of
waves.

Tew 7 iule coustuchon  Ackel photo of

Lo ey oaul s,

7 .
Actually what we show here is how waves produce interference, that waves implv interference. That Iinterference
implies an extended wave is a bit trickier and will be addressed later.

' e - {3 I,
gz\t\‘ ‘->“'—\ g'e\f{'mc\‘ wf P K 20 SN Og"e‘“ %,
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Where crests from A fall on top of crests from B, the rise of
the water will be twice that due to a single crest. Similarly, is true for
troughs. However, where a crest from A falls on the trough from B, the
rise of the water induced there by one set of waves is cancelled by the
fall induced by the other. Notice that radiating out from the pair of
holes in the breakwater are lines (I’'ve dotted a couple.) along which
there is calm water due to such cancellation. In between them are lines
along which the waviness is maximum. As the waves move to the right,
these regions of calm and waviness persist.

Anyplace along the beach where crests of waves from A
arrive just as crests from B arrive (and troughs from A arrive with
troughs from B)--places where our linear regions of maximum waviness
hit the beach--there will be a wave-height of twice the single wave
amplitude. Here the motion of the water caused by one wave is in step
with, and thus adds to, the motion induced by the other. At such points
the waves from the two sources are "in phase". These regions of
maximum waviness are marked "max".

At other places on the beach, where crests from A fall on
troughs from B--where our linear regions of calm come to the beach--
the water is undisplaced. At such points the upward motion of the
water caused by one wave is cancelled by the downward motion induced
by the other. We can say that here the waves are "completely out of
phase”, or "180 degrees out of phase”. These regions of calm, or
minimum waviness, are marked "min".

These regions of enhanced waviness alternating with regions of
calm come about because of the addition (or subtraction) of the waves
from the two sources. The phenomenon is called "interference”, but the
term is perhaps a misnomer. The waves from one source do not in any
way affect--or interfere with--the waves from the other. They merely
superpose upon each other, the displacements due to each add. The
term "interference" is, however, traditional.

The interference pattern: Standing on the beach ata point
equidistant from A and B, the two openings in the breakwater, we surely
find a region of maximum waviness. Since the waves from the ocean
outside the harbor arrive in step at A and B, and the distance from each
to us is the same, the waves from each will be in phase at this central
point (the "central maximum®, marked "max,").

Walking up the beach, we come to a region of calm. Here we
are a bit closer to A than to B. A being closer, the crest from A arrives
somewhat sooner than the corresponding crest from B. As a matter of
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fact, at this place of zero waviness, the crest from B arrives
exactly a half-period later than the corresponding crest from A.
It is the trough from B that coincides with, and just cancels the crest
from A.

If we continued up the beach, we would come to approximately
evenly spaced regions of calm and waviness. Below we plot this waviness
vs. the distance along the beach. It is called an "interference pattern”.

P wm\’\
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The geometric conditions for interference maxima and minima

Slits to spread out the light, so that light coming from the two
slits overlaps and produces interference, must be smaller than the light
wavelength. This is tricky, but they can readily be fabricated. The
grooves on a long-playing record or on a CD are this narrow. Let’s
assume we have such a structure. Simce the slits are long in the
direction into the paper, what we would actually see in an experiment
like this is a set of light and dark bands. We diagram this structure
below. ‘
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Let us now diagram the conditions under which waves from two
sources add "constructively” to give a maximum of waviness--brightness,
in the case of light. (or add "destructively” to give a minimum of
waviness-- darkness). We will be able to see why the maxima and
minima occur at particular places on the screen. The construction will
directly also allow us determine the wavelength from the interference
pattern. While we talk of light waves, what we say holds for any wave.

We again draw the crests of our waves incident from the left
and the two sets of waves spreading from the two slits. We are now
interested in the exact phase of the wave from A with respect to that
from B for the part of the wave from each slit heading toward a
particular place on the screen (in this case, the cenier). It is therefore
convenient to also plot the actual value of the electric field on the same
diagram we show the crests. (The crests, remember, are just the field
maxima in the up direction.) For the waves to the left of the double-
slitted barrier, where the electric filed is constant in the vertical
direction, one wavy line suffices.

) ﬂa.xo
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To the right of the barrier, in the diagram above, we focus our
attention on the central bright maximum, labeled "max,", which is
vertically halfway between openings A and B. The waves of electric
field from A and B come to max, along the lines drawn, and along these
lines, we plot the strength of the field. (With negative field, downward
pointing filed plotted as a trough.) At the instant shown, the field at
the barriar is half-way between a crest and a trough--at a zero of field.

Since the distances from A and B to the central maximum are
equal, the waves arrive at max, in step. (That’s, of course, why it’s a
maximum!)

Now we draw the same diagram for the first maximum of
brightess above the center, max,. To this point, the distances from A
and B are not equal. But if the waves are going to arrive in phase, a
crest of electric field from A must arrive just when a crest from B
arrives. But these coinciding crests need not have been at A and B at
the same time. It’s ok if the crest arriving from B is that crest which
was at B one period earlier than the crest arriving from A. For these
two crests to arrive at the same time, the waves from B must have
travelled exactly one full wavelength more than those from A. The-
line from B to max, must be exactly one full wavelength longer than the
line from A.

NN
" \//\\//\\/

The condition that determines that max, will be a maximum of
brightness is that the distance from it to B is greater than the distance
to A by exactly a wavelength, \. Knowing the position of max,, we can
find )\ by a simple geometric construction. Namely, on the line from
max, to B, mark off the distance from max, to A. The remainder of the
distance to B is just \. This distance is shown in bold i in the diagram,
and is seen to be just one wavelength.

We can thus determine the wavelength of the waves producing

the interference pattern w1thout seeing the crests of the waves.
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Knowing only the positions of the openings and the positions of the
maxima of brightness, or waviness, we could determine A.

Similarly, max, is the point on the screen which is exactly 2 A
farther from B than from A. For max,, the condition is 3 A, and so forth.
We can write this general rule as an equation. If d, and d; are
respectively the distances from A and B, the condition for a maximum of
brightness is :

dB'dAzn)\, 8.3

where 1 is any integer (n = 1, 2, 3, etc.). (A corresponding rule holds,
of course, for maxima below the central maximum. The distance to B is
in this case less by an integral number of wavelengths than the distance
to A.)

In between the maxima, are minima of waviness, places of
darkness on the screen. A minimum will occur when crests from A
arrives as troughs arrive from B. This will be true when the distance
from a point on the screen is exactly one-half wavelength farther
from one opening than the other’. We draw below the appropriate

construction for the first minimum of brightness, min,.
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s .
The condition for 2 minimum is just Equation 8.3 with \ replaced with \/2, and with n taking on only odd numbers.
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Interference and short wave trains

We will eventually find it important to

talk of short wave trains, wave "packets”
consisting of only a few crests--or even a single , i
crest, a very compact object, hardly a wave at all

Let’s see what kind of "interference pattern” such

a thing produces. We can talk of the

interference pattern due to a single pulse. We ___/\j\/
assume that only one of them at a time is in our

apparatus at a time. We assume our incoming
stream of pulses are far apart compared to the

barrier-screen distance. In that case they can \
interfere only with themselves, not with each ]L i
other. By the time the next one arrives, the first

has already been absorbed on the screen. (This ‘

will turn out to be very realistic and practical
assumption.)

v Let’s start out with the extreme case of a single crest with no .
negative-going electric field at all. Since minima of an interference
pattern are produced by a cancellation of crests by troughs; such a
single-crest wave, or pulse, could not produce interference. The
brightness of the light on the screen, "waviness", if we wish, would be
more intense at the central point, where the two pulses arrive
simultaneously, but it would be of shorter duration. Far from the center
‘the two pulses would arrive at quite different time giving two small
‘pulses of waviness. It would be impossible to use our geometric
“Construction to determine the "wavelength” of this pulse. Its wavelength
is not teally defined.
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Let’s make our wave a bit longer--a single crest followed by a
single trough. Again at the central point, pulses from A and B arrive
simultaneously and add for a maximum of wavinness. There is a place
on the screen where the crest from B arrives to cancel the trough from
A. But when the trough from B arrives, there is no second crest from A
to cancel it. There is some cancellation here, but no place is there an
even nearly complete zero of waviness. Further up the scxeenthe pulses
from A and B arrive at completely different times and produce no
interferen¢e pattern. Beyond the central maximum, there will be no
further maxima of waviness or brightness.

We certainly cannot use our construction to determine a
wavelength for this pulse. The smeared out interference pattern it
produces is not characteristic of a particular wavelength or frequency.
In fact, it does not have a specific wavelength or frequency.

N Y e -
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Chapter 2
Relativity I

The postulate and the speed limit

Alice laughed: “There's 0o use trying,” she said; “one canaot believe impossibie things.”

*1 darcsay you haves't had much practice,” said the Queen. *When Twas your age, | always did
it for half-an-hour a day. Why sometimes I've belicved in a5 many as six impozsible things before
breskfast.”

Lewis Carroll, "Through the Looking Glass®

One reason for interposing two chapters on Relativity between
¢lassical mechanics and quantum mechanics is to practice believing
“impossible” things. Coming to understand Einstein’s Theory of Special
Relativity is humbling. Things you knew for sure turn out to be wrong.
Grasping these ideas must expand the mind, there would be no room for them
otherwise.

Galileo taught us to frame careful questions for Nature and adjust
our intuitions to her answers, however strange they seem to us. Relativity
powerfully reinforces that injunction.

A wonderful thing about Special Relativity is that it can be
understood with a minimal physics background and some quite elementary
mathematics. Possibly the greatest impediment to understanding is the
difficulty of believing what you learn.

Einstein’s Theory of Special Relativity, which is usually just called
"Relativity", has withstood extensive tests. It is today the logical basis of much
of physics. It and quantum mechanics are without doubt the most well-
established theories in all of science. Today, one who denies the basic validity
of Special Relativity risks being considered a crackpot.

The theory is "special” in the sense that it does not address questions
of acceleration and gravity. It is formulated for observers who are not
accelerating and not in changing gravitational fields. Newton’s Second Law has
the same restriction to non-accelerating reference frames, or to "inertial"
systems. A different theory, Einstein’s Theory of General Relativity is in fact a
theory of gravity. It is "general” in the sense that it includes Special Relativity
as one particular, or "special”, case. While the seventy-year-old General
Theory of Relativity is still the leading contender among theories of gravity, it
is less well-established than the Special theory, and there is still active
examination of its validity. For us "Relativity" will mean the Special Theory.
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The propagation of light

The speed of light: When you turn on the

light, do not the far ends of the room become bright
immediately? It might seem that light spreads out ~ ~
from its source to the illuminated objects , S
- ~ -
Hh -2
. \ )

instantaneously. Galileo was one of the first to

suggest that it took light some small time to travel. If

only he could achieve sufficient skill at uncovering Wrers O
lanterns rapidly, Galileo felt he would be able to

measure its speed of transmission. He was basically

right. The distances he worked with, however, were

too small, and the light covered them too quickly.

A few decades after Galileo, the Danish
astronomer Ole Roemer recorded the exact times a
moon of Jupiter was eclipsed behind the planet. He
noticed that these eclipses were not completely
regular. They came later than exact regularity would
predict when the earth was on the far side of its orbit
from Jupiter. He correctly decided this was because it
then took the light from the eclipsing moons longer to
reach earth. From this time discrepancy, he
calculated the speed of light.

By the middle of the 19th Century, good
measurements of the speed were being made between
mountain tops. Light travelled at about 3x 10° m/s.
Maxwell’s great triumph was being able to calculate
this speed from measurements on stationary electric
charges and magnetic fields. He convinced his
colleagues that light waves were in fact waves of
electric and magnetic fields.

The "ether”: If light were particles shot out
of glowing bodies, a medium for its transmission
would not be necessary. Particles could move through
empty space. But interference proved lightwas a
wave. Didn’t something have to be waving?

o=y P
The speed of a wave does not depend on the ~ T =
speed of the object launching it. The ripples caused I¢
by the speeding bullet slanting into the water go no s ‘ ;
faster than those from the dropped pebble. The = ‘ é
properties of the medium in which a wave propagates My l 7
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determine how fast it goes. From those properties
Maxwell actually calculated the speed of light.

It seemed a strange medium which carried
light. It must fill all space, since light comes to us
from distant stars. It must readily stream through
solid bodies--at least those which transmit light. It
must be extremely tenuous since we feel no resistance
in moving though it. We see nothing of this ethereal,
all-pervasive substance except that it carries light.
"Ether" was a well-chosen name for it'.

With what speed does the earth move
through the "ether"? The question itself was
more fundamental than any answer giving some
particular speed. -Until now, only the relative motion
of objects was meaningful. But now, because--and
" onlvbecause--light was a wave moving in an
all-pervading universal medium, things are
different! One could determine absolute
velocities, velocities relative to this universal
medium. The "ether" was a "cosmic hitching post”
defining absolute rest.

According to Galilean relativity and
Newton’s mechanics, only relative velocity was
meaningful. No mechanical experiment could
establish absolute rest. But now it seemed, with
measurements on light, there was no longer a
complete equivalence of inertial frames. An absolute

1
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I will keep the word "ether" in quotes. We will soon see it need not exist. The concept is,
however, of historical interest, and thinking in terms of it allows us to understand the motivation
of the Michaelson-Morely experiment we soon talk about. The "ether" concept ls not intrinsic to the
problem encountered. When we abandon “ether", the problem stays. The word “ether”" could be replaced

by "vacuum™.
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velocity was perhaps meaningful and could be, in
principle, determined.

The Michaelson-Morely experiment

The motivation: Young Albert Michaelson
started measuring the speed of light as a scientist-
officer in the US Navy in 1878 and then refined his
technique as a professor at Case Institute. He wanted
to measure the speed with which the earth moved
through the universal ether--the absolute velocity of
the earth. By accurate measurements of the speed of
light through the "ether" in different directions he
would calculate the speed of the earth.

The method: Michaelson’s method?, was
not quite the one we discuss and diagram, but the
principle is the same and the result equivalent. Our
method provides a simpler explanation, though it
would be a more difficult experiment to actually do,
especially in Michaelson’s day.

In Chapter 3, we derived Galileo’s rule for
the addition of velocities with the example of a bird
flying past a moving wagon. Let us essentially repeat

that derivation, but with the moving wagon replaced v .’f‘m

by the moving earth in space, and the flyingbirdbya @ ',

short flash of light moving past. ' wihlkly
R g et

We will do this for two cases: the first for
the flash, or light "pulse"” moving from west to east, the
direction of the earth’s motion around the sun, and
the second with the light going in the opposite
direction. You would expect a slower speed for light
moving through space along with you than when it is
moving against you. In each case, an observer con >
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earth, could measure the speed of the passing light
pulse. From the difference in these two
measurements, he should be able to calculate the
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He used a technigue wherein light from a laboratory source
travelled along two paths at right angles and was then brought
together by an arrangement of mirrors to cause an interference
pattern. By looking for changes in the pattern as he rotated
the device, now called a "Michaelson interferometer", he could
detect any difference in the wavelength for light moving in two
directions and thus, by v = £ \, in the velocity relative to
the ether in the two directions.
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speed of the earth through space, or through the - L -
"ether".

Let us consider the moving earth with our experimenter upon it. For ")
our first case, a light pulse passes our experimenter’s marker att = 0 and has
moved some distance by t = A t. The earth has also moved, and the various
distances are indicated in Figure 8.1. The little arrows over the subscripts
indicate the direction of the light. The primed (’) values are those measured by
an experimenter on the moving earth. The unprimed values would be those
measured by someone at rest in space. i.e., at rest in that special system in
which light moves at the same speed in all directions, at rest in the "ether".

ANANANA—P \/,Qa’

t=0
; - . ¢ { s« > Vé'ﬂ .
™~
~ At ause\
t a Z q'\~\‘!$+
Mscg‘\'(-\kf
-\gsl

The distances indicated in the diagram are the distance the earth has

moved, the distance the light has moved in the frame of the earth, and the
distance the light has moved in the frame of the person at rest in space. All
these motions took place in the time A t.

The relationship between these distances, by inspection of the
diagram is

AXZ = Ax%p + AXe 93
We can divide Equation 9.1 on both sides by At to get
AX:@”/At = Ax'i’/At + QX%A‘E 9.9
The terms in Equation 9.2 have the obvious meanings»
AKe/ nt =Ve s the velocity of the earth through space.

ij/ lj—» is the velocity of the light pulse_movmg to the right--as
AE measured by the person at rest in space.

/;0(3\0’20? | - AR
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r , |
AXE’/ e V.Q’ is the velocity of the light pulse moving to the right--as
© measured by the experimenter on the earth.

We can therefore rewrite Equation 9.2 as a relationship between the
three velocities for the light travelling in same direction as the earth.

!
Vir = Vim + Ve 9.3

This equation is nothing but Galileo’s intuitively obvious relation written for a
special case. You might wish to try some numbers in it appropriate to a
situation you have a feeling for. Note the diagram is drawn for the case that the
earth is moving through space more slowly than the observed object.

Letus redo this diagram and go through the calculation in condensed
form for the case of a light pulse moving in the opposite direction to the motion
of the earth. The diagram is similar.

VEM

==

The distances marked can now be seen to have the relationship

MY = AXY — BXe 9.4

And again, we can divide through by A t, identify the various velocities, and
write for the light travelling in the direction opposite to the earth

/
- haten) - -5
\/2 b \/,Q - Ve : ?

But now, the right hand side of Equations 9.3 and 9.5 are the speeds
of light traveling in opposite directions as measured by someone atrestin
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the frame in which the speeds.in both directions are the same.
Therefore® ,
- = < S
\/X V,Q | 9.5
and we can equate the right sides of Equations 9.3 and 9.5 to get
t I
Vir + Ve = \/f — Ve 9.6

We can solve Equation 9.6 for the speed of the earth through space. This should
be the absolute velocity of the earth, its velocity with respect to the frame
of reference in which the speed of light is the same in all directions, or the
earth’s velocity with respect to the "ether".

Ve = (\/,:( _\/ﬁl’\/&

These two speeds of light when it was
travelling with and against the direction of motion of
the earth could be measured. Considerable accuracy
is required because the speed of the earth in its orbit
about the sun is ten thousand times less than the
speed of light. To expect to see a difference for the
two directions, one would need to measure light
speeds (or, at least the difference between two of

them) to better than one part in ten thousand of the
speed of light. Not an easy task, but Michaelson an
Morely were up to it.

The puzzling result was that no difference
could be detected between VJ—L-’ and vf The speed with
which light went by in the direction of the earth’s
motion was no different than the speed with which it
went by in the opposite direction. The speed of the
earth through space was zero! Vo, = o,

This could perhaps be explained if the earth
just accidentally happened to have a velocity so close
to zero with respect to the ether that no motion could
be detected. The experiment may not have been
accurate enough. Perhaps the absolute speed of the
earth through space were less than one partinten

Ve

3 .
The two velocities are equal to each other, not egual to the negative of each other, because we
chose to call our velocities and distances all positive nunmbers and take direction into account in the

derivation of the eguation.
2, 3 v
3,

« M
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thousand of the speed of light. That seemed unlikely,
but a possibility..

However, this could be checked. Six
months later the earth would be on the other side of 77
its orbit about the sun. Its orbital velocity would be I
reversed. Its direction through the "ether" would not
necessarily be exactly reversed, because the sun and
the entire solar system might be moving. But in six
mounths, the earth’s velocity would change by twice its
orbital velocity of 3 x 10° m/s. One could repeat the
experiment then.

Nevertheless, no matter how careful
Michaelson was, no matter how much he improved his
apparatus, no difference could ever be detected in the
speed of light moving with or against the motion of
the earth. The velocity of the earth through the
ether appeared to be zero--and stayed zero even
when the earth’s velocity about the sun
reversed.

The problem: The earth seemed to be at
absolute rest. Was the "ether", which had to extend to @
the edges of the universe, fixed with respect to our _
planet? Did the sun, the other planets, and the \,R = "‘%ﬂ T
distant stars all move with respect to that fixed "ether"
and afixed earth? Was Aristotle right after all? ' 3
What was a reasonable explanation for this?

(Actually, we now know even a stationary
earth would not solve the problem. They speed of
light is the same from whatever platform it is
measured. Someone cruising by on a fast rocket in the
direction opposite to that of earth and looking at the
same light beam as an earth observer would measure
exactly the same speed. It would pass the rocketeer at
the same rate as it goes by the earthling.)

At the beginning of the 20th Century, the cbnfounding experimental
situation for the speed of light in vacuum could be summarized: '

The speed of light is measured to be c
inallreference frames.

b 1

26D
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Many tried to explain this strange result, but without success.

The Gordian knot: Gordius, King of Phrygia, tied two ropes together
with a knot so complex, the ropes seemed impossible to separate. Reliable
mystics divined: he who separal‘ed theropes wouldrule the world. Many
pulled at the twisted coils in vain. One day a young fellow came to the knot, but
didn’t try to undo it. He separated the ropes with a swing of his sword.
Alexander the Great went on to conquer the world.

The postulate of Special Relativity: In 1905, Albert Einstein, still a
clerk in the Swiss Patent Office, published an answer to the problem of the
invariant speed of light. Whether or not his answer satisfies one immediately
as an "explanation” can be argued, but it is surely the solution.

Einstein argued that we have discovered, by o
these experiments, a new fundamental law of nature. P Q’:
We should state it clearly as a postulate, deduce its

consequences, and test them experimentally. }‘%\ ﬁ

The law nature displays to us is:

The speed of light is the same in all
reference systems.

If that’s true, forget about the "ether” There is now no need, or even
arole,forit. The "ether" existed only to define that particular reference
system in which the speed of light is the same in all directions, the system in
which the medium carrying the light waves is at rest. If the speed of light is the
same in all reference systems, any reference systems can be considered to be
at rest.

No measurement of any absolute velocity is possible. Only relative
velocities are meaningful, hence Einstein’s Theory of "Relativity". All
constant velocity systems are equivalent. Therefore, another way to phrase
Einstein’s postulate: The laws of physics are the same in all inertial
systems. Any non-accelerating system canbe considered at rest.

When the postulate of Relativity is stated this way, we can see that
actually doesn’t depend on any property of light. It came about historically by
measurements on light, and in fact the speed at which light (and some other
things) travel is germane. But we will see it applies much more generally and,
in principle, could have been deduced without reference to light at all.

22 eyl
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Stated as an equivalence of all inertial systems, the postulate of
Relativity sounds almost innocuous. Doesn’t this just bring us back to Galileo’s
idea of relative motion? No. If we accept Einstein’s postulate, it takes care of
the puzzling Michaelson-Morely experimental results in a formal sense--it
does so by fiat. But it does violence to our intuitive understanding of time and
space. Itwas this intuitive understanding which gave us Equations 9.1, 9.2. On
it we based our entire discussion of the speed of something seen from different
moving systems here and in Chapter 3. How can those equations and that most
reasonable discussion with which they were derived be wrong? There is indeed
a fundamental error. ’

We must understand that error. But for now let’s deduce some
consequences predicted by Einstein’s postulate and see if they are in fact
confirmed by experiment. They are, even if they are almost impossible to
believe. By passing our "chip and hit tests" the postulate compels consensus,
We will find ourselves forced to accept a new, and almost ridiculous, concept of
the space and time we occupy.

Testing the postulate of Relativity

For some scientific postulates, experiments which would tend to
confirm them, or might decisively refute them, are immediately evident.
Galileo’s postulate that heavy and lighter objects fell at the same rate, for
example, readily suggests the experiment of measuring speeds of fall. The test
of Newton’s Second Law by measuring forces and accelerations and substituting
these numbers into F = Ma seems straightforward.

What are the testable experimental predictions of the speed of light
being the same in all reference frames? Well, you could measure the speed of
light and see that it was the same no matter how fast you moved. But that’s not
afair test. The postulate was created to account for that observation.

Qur program to examine the postulates: We proceed by a technique
developed by Einstein himself. He made up little stories, or "gedanken”
(thought) experiments--the German word is often used--to illustrate the new
nature of time and space. Once that is clarified by the stories, actual testable
consequences of the postulates present themselves.

In these stories, we will look at the same events from two different
reference systems moving with different velocities. An observer in either can,
by the Relativity postulate, legitimately consider himself at rest, and the other
as moving. We will analyze the what these fictional observers report. From
that we will deduce experimental predictions of Einstein’s postulate. We then

1%
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see whether actual experiments accord with or refute these predictions and the
postulate.

Let us tell our first story and deduce its consequence. |

cis the universal speed limit.

A pulse of light from a flash bulb passes me going to the right at
c (which is always 3 x 10° m/s). According to Einstein, my friend, whizzing past
me in the same direction on a super-fast skateboard, sees the same light pulse
passing her at c. There is something strange right here, but let’s go on. We can
each learn of the light speed the other reports, and perhaps question the
other’s measurement technique, but, if Einstein’s postulate is correct, there is
no physical event that could demonstrate one of us right and the other wrong.

Can this be so? Let’s try to refute the postulate. She and I arrange
for her to scoot past me at a speed greater than c. And, just at the moment the
light pulse goes by me, she will plan to be a few feet ahead of it. Her going
faster than the light means that in each time interval she will cover a greater
distance than the light pulse. The distance between her and the pulse
constantly gets larger. If she has a camera pointed back at the light, the film in
it will never be exposed to the light pulse. Iillustrate this story, from my
reference frame below.

T C 7 ¢ t s 70

¢ 7 7 7 7
—f—

éj__\u,;°‘
4. i 74(/"“4“9 in
\ hic FY'ava{_

But now let’s look at the same situation from her point of view, which
Einstein claims is as valid as mine. She legitimately insists that she is not
moving at all. She is just pushing on the skateboard to stay in one place. She
must do that because the road and are moving to the left with a velocity greater
than c. The light pulse will approach her at ¢ and simply enter her camera. My

2&&15’
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motion is irrelevant to her photography. The story from her frame of reference
is illustrated below.

My friend and I will have a point of
disagreement which is physically resolvable.
She will claim that her film is exposed to the
light pulse, and I will say that cannot
possibly be. To see who is right, after she
closes her shutter, she can stop her
skateboard, and together we can examine
the film. It will either exposed or it will not -
be exposed. One of our points of viewmust 7 ¢ (¢ ¢ 77 77 7
be wrong and the other right. It could then
not be true that either of our reference
frames could be considered at rest, as
Einstein claimed. The nice thing about this
experiment is that whether the film is
exposed or not, Einstein’s postulate would
be proven wrong.

Only if the experiment my friend and I propose were impossible could
the postulate remain unrefuted. The crucial point of our proposal was her
moving with a speed greater than c¢. For Einstein’s postulate not to be
falsified by our experiment, nature must somehow prevent her speed from
ever exceeding that of light.

A camera-carrying woman is not the only observer possible, any
physical entity could replace her by interacting with the light pulse.
Therefore for the postulate to be correct, no object at all could ever move
faster than light. ¢ would then be the natural speed limit of the universe. Is
this actually true? ‘

g
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Experimental test: The experimental test is therefore to try to get
something to move faster than the speed of light. To the extent that every
sophisticated attempt to do that consistently fails, we would rely more and
more on the correctness of Einstein’s postulate. But if we can ever get
anything to move faster than light, we force the abandonment of Einstein’s
postulate of Relativity.

Let’s list the speed of some of the fastest items around, other than
light itself.

Fastest cars (almost 500 mph)--- 0.0000008¢c

Fastest plane (8,000 mph)------- 0.00001c
Fast rocket (80,000 mph)-------- 0.0001c¢
Electrons in TV tube-------- ----0.01c
Electrons in x-ray tube--------- 0.1¢
Helium nuclei in Bevatron----------- 0.8¢

Getting close!

But look what now happens:

Beta-ray electrons-------------- 0.99c¢
Betatron electrons-------------- 0.9999c¢
Electrons at SLAC*---------emmmmmmv 0.99999998¢

Fast cosmic ray particles------ 0.999999.7.999¢
(from outer space) '

From this data it seems we can get things
extremely close to the speed of light, but exceeding it
somehow appears impossible. ¢ = 3x 10° m/s seems
indeed to be a universal speed limit. Before Einstein
came along no one ever suspected a natural speed
limit. Score one (at least) for the Relativity postulate.

4 .
Electrons at SLAC are sped up at the Stanford Linear Accelerator Center in a 2-mile long vacuum

tube. The object is to keep pushing them to get them to go faster and faster to crash into atomic nuclei to
study what they and their parts are made of.

Ud
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The relative velocity equation: If it’s true that
nothing can go faster than light, what’s wrong with the
relative velocity equation we derived in Chapter 47

That equation is, with slightly different notation, ~ ‘§/ — } %—) —_— (» .

v=v +u, 9.8
where v is the velocity of an object as seen V)
from the frame we consider at rest, v’ is its
velocity in the moving frame, and u the S
velocity of the moving frame. ‘

Doesn’t this say that if the skateboarder moves with a velocity u, even
somewhat less than c, and she sees the light going past heratv’ = ¢, I, in the
rest frame must see the light beam go by at a speed v greater than c. Yes, it
says that, but the equation is wrong.

Using the postulates of Relativity, we can derive the correct formula
for the relative velocities. Instead of Equation 9.8, the relativistically
correct formula is

v= (V+ u)/(H. ‘*V'/CZ) 9.9

Now, at velocities small compared to the speed of light, the velocities
we are used to, the term uv/c?in Equation 9.9 is extremely small compared
to 1. The denominator of Equation 9.9 is then almost unity, and the
relativistic equation is essentially the same as Equation 9.8. For velocities
small compared to that of light our old ideas work well.

But try Equation 9.9 for some
velocities closer to c. Consider two pI? —
spaceships of an advanced society going
past each other in our sky. The first, a large
freighter, passes the earth at only half the o0 06080 —
speed of light, u = ¢/2. The other, a faster & 3\7u= C./ }
patrol ship, is overtaking it. We overhear '
the navigation officer on the freighter %

report that the patrol is overtaking him ata _ )

rate of v’ = 3¢/4. By our old T /\
considerations, we might conclude that the ' .
patrol is going by us at . \\

v=c/2+3c/4=5/4=12c.

\;@&M
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This would mean we would see something
exceeding the speed of light, a violation of
the Relativity postulates (and of all
experimental evidence).

Using the correct relative velocity relation, Equation 9.9, we get
v = (¢/2 + 3¢/4)/[1 + (¢/2)(3¢/4)/c*] = 10c¢/11 = 0.9 ¢,

which is close to ¢, but does not exceed it. Try some other speeds in the
equation. Tryv’ = ¢, and u = anything; or u and v both equal to c. It’san
interesting equation to play with.

What was wrong with what Galileo (and we) did?: Ok, this new
equation for relative velocities given by Einstein’s postulate of Relativity
is the one that works. But what was wrong with our original derivation,
which seemed so reasonable and intuitively correct. Why does it lead to
incorrect experimental results? How could it possibly be wrong? It
depended on nothing but the obvious addition of distances and a division of
both sides of that equation by a time.

The trouble was that we accepted Isaac Newton’s assumptions that
time and distances were "absolute", the same for all observers. We took it
for granted that if were separated by a certain time for the woman in the
wagon, the two events were separated by the same time for the man on the
ground. We also assumed that the two observers would measure the same
distances between to points.

These assumptions are incorrect when velocities are comparable to
that of light. In the next chapter, we see that we must regard the passage of
time and the extent of a length as relative things, things which depend on
the reference system relative to which they are measured. (Hence the
name, "Theory of Relativity".) :

How is the universal speed limit enforced? If we keep pushing
something, doesn’t it keep accelerating? Therefore if we keep pushing it
can’t we make it go as fast as we want, even faster than c¢? What stops it
from accelerating? Good questions. And there’sa straightforward answer:
you can’t accelerate something past the speed of light because when
something goes fast, its mass increases. The closer the speed comes to
that of light, the greater its mass, and the harder it becomes to accelerate.

4&_0211
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The way mass of an object increases with the object’s velocity is
shown in the graph below. We see that at a velocity of about half
that of light, the mass has increased by about ten percent. When
v/c = 0.9, the mass doubles. As the velocity approaches c, the mass goes to
infinity’. Not that for velocities small compared to c, the increase of mass is
truly tiny. Therefore what is said by the Theory of Relativity does not
disagree with our everyday observations.

M 2V vesk wmass

o 0.2 0.4 0.6 Q8 1.0

e

We must now accept the fact that mass, like velocity, is a relative
quantity. It is different in different frames of reference. Inits own frame
of reference, the velocity of an object is, of course, zero (by definition of its
own frame!). Likewise in its own frame, the frame in which it is at rest, the
mass of an object always has its zero velocity value, its "rest mass". And
remember, all (inertial) frames have equal status. '

Is this increase of mass "real” or merely "apparent”. In the next
chapter, we will see that time and distance are also relative quantities,
different in different frames. This change in mass is as real as the change in
time and distance. And you will be able to decide for yourself on ]ust how

"real" you want to consider those differences.

In the next chapter, we will see this same graph for time and distance. We will then discuss how

it comes about in those cases. A similar line of reasoning works to show the mass increase, but we will not
go through it.

r
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The equivalence of mass and energy

Mass was the "amount of matter". Where does the increased mass of
a moving body come from? It comes from the energy you give a body by
pushing on it as it moves. Ordinarily, at speeds much less than c, you give
the body extra kinetic energy by increasing its velocity. But near the speed
of light, when its speed cannot much increase, the energy goes into
increasing its mass. Mass and energy are interchangeable. '

If we have a system (a region) into or out of which no energy or mass
flows from the outside, when its energy increases or decreases, for whatever
reason, its mass increases or decreases by the amount

AM = AE/c. 9.10

c?is the conversion factor between mass and energy. One joule divided by
(3x 10%)%is equivalent to one kilogram.

For example, the mass of a clock increases when we put energy into
it by winding it up. The increase is tiny, but it’s no doubt there. The mass of
a quantity of wood and oxygen decreases when they combine to form ash
and release heat. The mass of the constituents of a hydrogen atom, an
electron and a proton, increases when we put energy info the system to
pull them apart. The mass of the fragments of a uranium atom are less after

o Al a srramtiim cmlite armard 1 o fiogian roeasti
a the uranium splits apart in a fission reaction. The consequently released

nuclear energy is responsible for nuclear reactors and nuclear explosions.

Only in the case of nuclear reactions is the mass change actually large
enough to be readily measured. But it can be measured in chemical
reactions by sensitive techniques. In every case, however, when energy is
released by a fuel, the mass of the matter left over is actually less than it
was to start with.

Multiplying both sides of Equation 9.10 by ¢*, and leaving off thep’s,
we get

E = Mc>. 9.11

¥
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Chapter 10
Relativity II

The new nature of time and space

What is time? If no one asks me, I know what it is. If I wish to explain it to him who asks me, I do not
know.
St. Augustine

1 do not define time, spaée, place, and motion, as being well known to all...

I. Absolute, true, and mathematical time, of itself and from its own nature, flows equably without
relation to anything external...

11. Absolute space, in its own nature, without relation to anything external, remains always similar and
immovable...

Isaac Nevwton

Subtle is the Lord...

Albert Einstein

Newton would not define time and space--everybody knew what they
were, he said. But he was explicit about their being "absolute"--the same for
everyone. We made the same assumption. We originally assumed that when an
hour passes for the person on the moving cart, an hour also goes by for her friend
on the ground. We assumed that time and space measurements were independent
of the reference frame from which they were made. One person’s time was the
same as another’s.

Einstein’s postulate, which, by fiat, resolves the problem of the speed
of light being the same for all observers challenged that assumption. We now
show that it predicts a strange nature for time and space, one at variance with our
earlier Newtonian assumptio.

Einstein’s postulate is now accepted as correct. Why? There canbe
only one reason: whenever its consequences are subjected to experimental
tests, they are never found wrong.

" Let us first explore the difference in the passage of time for observers
in two different reference systems. '
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Time is relative
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Now, with another story--a "gedanken" experiment--we use the postulate of
Relativity to predict that the passage of time slows in a moving system. We then

look at the experimental results confirming this effect.

The fast-lady-in-a-cart story: A lady
in a cart travels past her stationary friend ata
great rate of speed, a good fraction of the speed of
light. Since her cart is moving smoothly ata
constant velocity, it is a good inertial system, and
the laws of nature are the same in her cart as on
the ground. Everything behaves quite normally.
She notes that her pulse beats about once per
second, 1 hz, and balls bounce and lights flash just
as they did when her cart was at rest with respect

.® ~—

to the ground. Y G A A ¢

LEN SV V4 l ¢ ¢ 7 TFF=)

Infact, according to the postulates of Relativity, she can consider
herself at rest, and her friend on the ground--and the ground itself--to be sliding
past her at a great speed. And she adopts that perfectly legitimate attitude.

We now want to compare the time passingfor her between two events
in her rest frame with the time passing between the same two events for her friend

on the ground.

In her reference system: The lady
will, of course, use a clock to measure the passage
of time. Any good clock will do. All her good
clocks agree with each other. There is, however, a
clock that is readily analyzed by our techniques: a
"light-clock". It allows us to make easy
comparisons between two different reference
systems.

With a light-clock, she can measure
the time between two events by beaming a pulse of
light vertically up from a flasher on the floor to a
mirror on the top of her cart which then reflects it
straight back down to a photocell which clicks
when the light pulse hits it and immediately causes
another light pulse to be sent by the flasher. The
lady can now measure any longer time by just
counting the clicks of her light-clock.

R
K
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The time interval her clock would tick off would be just given by our
old Equation 3.3,v = A X/ At, o1, solving for At,

At = Ax/v  or,inthis case,
At, = 2d/c, 10.3 °

where 2d is the distance for the vertical round trip up and back from the mirror, ¢
is the speed with which light always travels, and the time is At,, where the
subscript "o" emphasizes that this is the time that passed in the light-clock’s own
reference system, the one in which the clock is at rest.

The light-clock would, of course, agree with all the other clocks in
her system: her wristwatch, her pulse, and the 1/2 inch per month rate of growth
of her hair.

In his reference system: Let us leave the lady with her clicking light
flasher and join her friend on the ground as he watches her go by. This gentleman
doesn’t see things quite the way she does.

In his reference system, he considers himself at rest, a perfectly valid
assumption, according to the postulates of Relativity. He sees the lady moving by
rapidly. According to him, her light pulse, which she (legitimately!) considered
to go vertically up and down, does not do that at all. Her fast cart has moved the
considerable distance, 2q, in the time during which the light pulse left the flasher,
bounced off the ceiling mirror, and hit the photocell. The path he sees for the
light is along the two diagonal lines of length p.

a 7 c
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For the gentleman on the ground, the light pulse covered a greater
distance between the flash and the click than that same light pulse did in her
frame. Since for him the light moved at the same speed it did for her, he must say
that it took a longer time to cover that longer distance. For him the time between
the clicks is given by

A\t =2p/c, 10.4

There is now no "o" subscript on the time because this time is nof determined in
the clock’s own reference system. It is the time between the same two events (the
two clicks) happening in the clock’s moving system, but which are now observed in
the gentleman’s rest system.

Since p is greater than d, A tis greater than A t,. He says a longer
time has passed between clicks than she says has passed. If she looked at her
wristwatch, she might say that 4 seconds passed between clicks of the photocell.
She would say A 't = 4 5. If he looked at his wristwatch, he might say that 9 seconds
passed between the same two clicks. He would say At = 9s.

A clock that gives a smaller number of minutes, seconds, or
microseconds, etc., for the time between two events is said (ungrammatically) to
"run slow". The gentleman is therefore saying that the lady’s light-clock is running
slow. Since all the clocks in her reference frame agree with each other, her
wristwatch, her hair-growth rate, etc., he is saying that all her clocks are running
slow, that time is passing more slowly in her moving reference system.

Everything was consistent for the lady, and it is for the gentleman.
All the clocks in his reference frame agree with each other, including the clock
which sends a light beam along the diagonal of length p, i.e., the clock physically
in the moving system, but as interpreted by him. He can use this moving light-
clock to tell time, but he will have to correct for the fact that it Tuns slow.

This is all the math you need to truly understand the basic idea of
Relativity.

Calculating just how slow: By exactly what factor does he say
her moving clocks run slow? This is readily calculated by using the
diagram of Figure 10.2. Since

Aty =2d/c,and 5t =2p/c,

At= (p/d)Ato

Noting from Figure 10.2 that 2q and the distances d and p are
related to each other by the Pythagorean Theorem for right triangles

¥ 0"}.6\'-(0 FVE
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Therefore, rewriting the relation of A tand At,,

_f - | ,
At‘TAto - f b‘t’o = ‘ A'to
But ¢ :AvAt/Z, and p = ca t/2. Therefore, substituting these in
above,

Pt = ! At, — ‘ at,
j' act (pHr \/ | — V/er

Because the expression with the square root comes up so often, we
define the Greek letter "gamma"

and Y= : and | At = AL,
U= V¥ L

/o.r /o.é

This is the relation between the amount of time that passesina
moving system and that passing in a system at rest. These two different times
are the times between the same two events. By how much do these times actually

differ?

287
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In Figure 10.3 we plot $asa

function of v/c. Note that $'is always larger
than one, but that it differs extremely little

from one except when the velocity of the

moving system becomes comparable to the -3
speed of light. Note particularly that asv

approaches c,¥becomes infinitely large.

What if the gentleman looked at
the lady’s wristwatch? Would he actually see it ’

running slow? Yes. But we must be careful

about what we mean by "seeing". The light

coming to his eye from different parts of the? /
watch must travel by different paths, and when /
these paths are changing their length rapidly, ,/
we have a complicated situation. The image Vv
falling on his retina at any time is not a good /r/
representation of the moving object. Instead 1 - L 1l
of talking of "seeing", we should always speak
of "measuring". A good measurement will
show th‘e wristwaT:ch to be running slow. We o o0z 04 06 oa
will actually continue to use the word "see”, V/c—>
but in its general sense of "understand". By his
measurements he will understand all her
clocks to run slow.
Symmetry: We have used the postulate of Relativity to calculate
exactly how much slower clocks run, and time passes, in moving systems than in
the one at rest. But according to the postulate, either system can be considered
at rest. What we calculated was the slowing of her time as seen by him. She has
every bit as much right to consider herself at rest. She could look at a light-clock
he builds in his system and decide that his time was running slower than hers.
Real or apparent slowing?: This symmetry is fine and just what is
required by the postulate of Relativity. But if this is so, are we not just talking
about an apparent slowing of clocks in moving systems? How can she see his
clocks run slow and he see hers run slow and have this be a "real” effect.
As a matter of fact, a gedanken experiment was concocted shortly
after Einstein’s formulation of Relativity ‘- o~ '
to show that the slowing of moving clocks was illusory--an artifact of the
observation process. The story is called "The Twin Paradox", and it goes like this.
A 0% I
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One of a pair of 25 year-old
twins takes off on a fast rocketship for a
visit to a planet of a distant star. He rapidly
accelerates to a speed of 0.95¢ and stays at
that speed until he reaches the star. Once > \i/
there, he spends very little time before

reembarking and returning home, again at gEes s T T :
the speed of 0.95c. 4 ax

————— < - —
. — =1 _
During the astronaut’s travels @ < -

60 years pass for the twin on earth. A
stooped and grey man of 85 comes to the
rocketship landing site to greet his
astronaut brother, who spryly jumps from
the landing pad. After all, for the twin

travelling at 0.95¢, At, = At/4t From our /g? ;f%
graph, we can see that for )] e
v/c = 0.95,%= 3. Only (1/3)(60) = 20 L A A
years have passed for the astronaut. He is

now only 45 years old.

That is surely what Relativity says. But now the "paradox". Relativity
has a symmetry. Should we not be able to say that the astronaut never moved. It
was rather his earth-bound brother and the rest of the universe, including the
distant star, which was the moving system. In that case, the astronaut should be 85
and the stay-at-home twin only 45. How then can this difference in the passage of

PRI R it cepthe fo e o TmaTra r o 3 i
time be real? Relativity seems to pose a paradox and is therefore in trouble.

The paradox is phony. There is actually no symmetry in this case.
Relativity told us that the laws of nature are the same in all constant velocity
(or "inertial") systems. We derived the relativistic equations for constant velocity
systems. Only the inertial stay-at-home twin may apply these relations. His
conclusion, that he aged much more than his twin, is valid. Application of them by
the twin who accelerated is invalid.

That there is no symmetry here is demonstrated by the fact that the
accelerating twin could tell he was accelerating. He could, for example, feel the
force of the seat back accelerating him. During his long periods of constant
velocity travel, he could legitimately consider his brother’s clocks running slow.
But during his accelerations, which were very large if he changed his velocity by a
lot in a short time, he would conclude that time was passing not slow but extremely
fastfor his brother. The details of the accelerating system are complex and we
will not discuss it. |

So is the slowing of clocks real? Yes. One object can age more
rapidly than another. Relativity says that you can, in principle, become older than

'/{;’\mo?}? - n . ral
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your mother in every physical sense. Of course, we have not (yet?) moved any
objects the size of people at speeds where the effects are large. Let’s talk about
some of the actual tests verifying the slowing of moving clocks.

The experimental data: The
best demonstrations of the slowing of time
are done with the tiny objects created when
atomic particles accelerated to high
energies are slammed into each other. (We
learn what nuclei, protons and their ilk are
made of by seeing what flies out in such
collisions.) Onmne type of objectformed in
this way is the "pion".

Pions: One of the best
examples of clock slowing is an observation
done on pions. Pions are unstable, and
rapidly change, or "decay” into another kind
of particle called a "muon". Each pion
decays randomly. That is, if you start out
with a large group of pions, at the end of a
time called the pion "half-life", one-half of
the group of pions will have turned into
muons.

Therefore, if we start out with
a group of pions, we can tell how much time
has passed for them by noting what fraction
of them has become muons. We can tell the
"age” of a group of pions by seeing what
fraction of the group has become muons.

It is possible to accelerate a
group of pions to speeds very close to that
of light. One finds that a fast moving group
of pions turns into muons at a much slower
rate than a group of pions which are
stationary in our reference system. The
slowing is exactly that predicted by
Relativity theory.

We can actually do the "twin
paradox" experiment with pions. Two
groups of pions of identical "age", can be
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created. One may be left at rest in the
laboratory and the other accelerated to

extremely high speeds traversing a circular -0 U= 0.9 §C
orbit many times. When the speeding group — prmm——
of pions is brought to rest, it can be

X ) ; W w~
compared to its "twin" which never moved. .?; 1:,1;“1; ““Wrr 77:”1(
Since time passed more slowly for the an T ;rrr m T+t
moving pions, fewer of that group will be «T ;(Y T a0

found to have become muons. The group
which traveled at great speed will be much
younger.

Clock on afast jet: Perhaps
the most dramatic demonstration of
relativistic slowing of time was performed
by physicists who built some extremely
accurate clocks. To test Einstein’s theory,
they left some of their clocks in
Washington, D.C., and took others around
the world on commercial jets flying about
five hundred miles per hour and actually
stopping over in various cities.

At such slow speeds, the
relativistic slowing of a clock is only a very
small fraction of a second, even for a round-

the-world trip. But the clocks were highly , T

accurate. When the researchers got back to . . ‘
Washington, and compared the moving

clocks with the stay-at-home clocks, the wthun
travellers were slow by just the predicted ; A

amount. T e o e ;6;, > F} ,r;), .

There have been a vast number of indirect experiments where the
relativistic slowing of time is significant. In no case has the prediction of the
Theory of Relativity ever been shown wrong.

A comment on thinking deeply on the nature of time: In times past,
philosophers speculated freely on the deeper nature of time. (I’'m not sure if any
ever seriously proposed anything similar to, or as strange as, what we now know to
be true. But that’s not the point I wish to make.) Today, if you wish to speculate
on the deeper nature of time, you must start out with what we know from
Relativity. That’s true, at least, if you are talking of physical time, that
wristwatches, the moving planets, and the rate of growth of hair measure. That

oy 23 | 848
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should make any speculation particularly exciting. You start out with a fantastic
perspective.

Perhaps only "psychological time", or perceived time--the kind that
passes faster as we grow older and slower when we are bored--réemains available
for free intuitive speculation without consideration of relativity.

Contraction of length in a moving system

We now examine a particular consequence of the slowing of time in
moving systems: The slowing of time in moving systems tellsus that lengths
of moving objects get shorter. This relativistic contraction actually leads
quite directly to phenomena we see and use in daily life. Let’s try to understand
how this comes about.

Suppose I wish to measure the

distance between the two sets of goal posts at the '

ends of a football field on which I stand. One i — — V
legitimate way to do this would be to get a friend Y G AR A v G S A A AR S Y G AN G
to drive the distance from one goal to the other at )

a known velocity v and have him time the trip. He O,.——-;_ :

would start his stopwatch at the first set of goal =

posts and then read the time A t as he passed the oot i B

second set. He would then report the distance as

AX=VAL

But what if my friend’s stopwatch ran slow? Say that when my good
clock'read 20 minutes, his read only 10. He would report the distance between the
goal posts as two times shorter than I would say it was. I could determine that
distance by timing his travel with my clock. Or, since I am at rest in the frame of
the distance between the goal posts, I could also have measured the distance with
a meter stick. Both my methods would, of course, agree.

With this simple example, we have almost made our point. If
someone measures a length from a moving system this way, but uses a slow clock,
they will find a shorter length.

Now, we have previously shown that . 0

clocks do indeed run slow in a moving system, by - S >V
an appreciable amount for velocities close to that o« & PE—y
of light. If someone zipped by on a fast rocket and

measured the distance between the goal posts by

knowing their speed and timing their trip, even if i §
. . r r roe

pavg AR
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they used perfectly good clocks, they would
measure a shorter distance. (I would, of course,
say their clocks were running slow.)

In the reference frame of the rocket, as valid a frame as mine, the
football field is moving past them at a great rate. They would measure ("see"
contracted lengths for football fields, or anything else, moving past them. The-
faster they it moved by, the shorter it would become. This holds not just when the
lengths are measured by timing. In their perfectly valid frame of reference all
measurements of the length of things must agree.

The shortening of moving objects' is by just the factor that moving
clocks run slow.

o = A AE, | AE, = OF /4

Mé, /Q - ’Qo
//XK j}s\ a\wa;‘xs A

where and are the distance and time as seen in the not-moving system and  is
the distance in the rest frame of the length, the length’s ownframe, the
moving system.

Careful. The equations for time and length are not symmetrical. Just
remember three things: 1) that the factor relates the moving lengths and times,
2) that a moving clock runs siow and therefore reads a shorter time {A t.), and 3) a

moving length (1) contracts and is a shorter distance.

Do things really get shorter when they move? Asin the story of
time, relativity forces us to carefully define what we mean by "length". Just
"looking" at the length of an object is quite meaningless when that object moves by
us at a speed close to that of light. Light from the different ends of the object
travel to the eye by different paths, and such light getting to the eye at the same
time does not necessarily leave the object at the same time. "...the same time.." is
itself something we have to be very careful about. All this makes "looking" a
complex process.

But if we define length in the only meaningful way, as the result of a
measurement process, the one my friend used in measuring the football field for
example, the shortening predicted by Relativity is indeed real. Itis of course the

1 .
The shortening is in the direction of motion only. It’s the only direction to which our original
example applies. The driver does not conclude, for example, that the distance on the road between his two

front wheels changes even if his clock is slow.
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length of the moving object in the "rest frame" which is shorter. Inits own frame,
the length is, of course, always at rest, and its length, its "proper length" does not
change.

Aswith time, instead of talking of "seeing" a moving length as
contracted, we should speak of "measuring" a moving length as contracted. Butwe
will continue to use "see” in the more general sense of the word where it means
"understand”. The length contraction effect is well demonstrated, and we discuss
an important example of that now.

Relativistic forces between moving currents  &°° wotly, bt "M&“ls\

If you move rapidly pasta

picket fence, in your frame, the spacing

=P

o

14 }
between the pickets contracts according to u { \
our relativistic equation. With the pickets D - V
closer together, you see more pickets in . &
your neighborhood. This effect is true for _‘q"‘ ‘?:‘\“:&
the distances between any objects. oh €

The objects we want to talk ‘ ﬁ R 1 1

oy
=
=t

P

about are the two kinds of chargesina

conducting wire. They are the free negative _ veo

electrons moving in the wire and the
positively charge atoms of the wire making n Reewe Vg
up the bulk of the metal. (Remember, the oS Cane A oot
atoms of a metal are positively charged h
because they have each lost an electron to
the free electron crowd.) The positive byt

- ““
atoms in the metal are more or less equally ~ = e
spaced in three dimensions, but thinking of

them as being in a single straight lineis a A
good enough model for us now. The A
electrons in a copper wire are not S
stationary. But in their random motion, + A
they maintain some average distance. 3 ‘ T
Thinking of them in a single straight line LA + +
and neglecting their random motionisa - 7 ' e
fine simple picture.

In a metal there are just as

many free electrons as there are positively ¢

charged atoms. We represent a short (,:: ': "‘; - -’: e I

section of a very long straight wire in Figure

10.2a. With the same number of fre_e



-

Flle: REL2.590 Chapter 10 (Rel. II) R DRAFT - Page 13

electrons and atoms in each meter, the wire:
is electrically neutral, uncharged.

Now let a current flow. Our story gets a bit complicated. One effect
will causing another, and we will need to look at things from different reference
frames. Butlet’s plunge on. ‘

As an electric current flows in
our wire, the free electrons move to the
right with velocity "v". The positive atoms, ¢~
and thus the wire itself, remain fixed. + + 4+~ +~ 4+ +
Although v is very small, there is
nevertheless some extremely tiny
relativistic contraction of the average space
between the electrons because of their
motion. In the rest frame of the wire, the
electrons become closer together. It might
seem that there would thus be more
negative electrons than positively charged
atoms in a section of wire, and that section
would be negatively charged. But this does
not happen.

—  ww— .
e

Why not? (And how do we know?)

The "Why not?" first. The relativistic contraction does infact bring
the electrons closer to each other in the rest frame of the atoms. But the atoms,
being electrically attracted to the electrons, squeeze together to stay as close as
possible to their electrons.

When the electrons start to flow they get closer together and actually
and pull the atoms closer to each other with them. The whole wire gets a very tiny
bit shorter, but it remains uncharged. Since typical electron speeds in carrying a
current are only a few centimeters a second, the change in length of a meter of
wire is a tiny fraction of a single atom. The shortening is insignificant. The
important point is that even though the electrons must get closer together because
of their motion, the wire stays electrically neutral even when it carries a current.

How do we know this is true?

How do we know the wire stays electrically
neutral? If a current-carrying wire were not - ¥+ 4+ - 4 &+
neutral, an electron at rest outside it would — o e e e e =
be attracted or repelled. This does not
happen. there is no electricfield generated
toward or away from a wire when it carries a '

current. If the atoms did not squeeze down ' Vo Qo*r (&
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to join their slightly closer together
electrons, there would be such afield and a
resulting force on an external charge.

The stationary outside electron therefore sees an equal number of
stationary atoms and moving electrons in each section of wire.

But now suppose our outside 6 + &£ *4 4+ & 4+ g
electron were to move in the same direction - — - = - =~

(and, for simplicity, with the same speed) as v
the electrons inside the wire. - > \V

This moving electron does not change the wire in the wire’s own
frame. But in the frame of the moving outside electron, the previously stationary
positive atoms are now moving to the left with velocity v, and the space between
them therefore relativistically contracts. The previously moving electrons in the
wire are now stationary. The previously relativistically contracted distances
between them "uncontracts", expands. The moving outside electron therefore
sees an increase in the positive charge in each length of wire and a decrease of
negative.

The positive charges closer together and the negatives farther apart
than in the stationary frame of the wire--in which it was neutral--both make the
current carrying wire have a net positive charge in the frame of the outside
electron.

The conclusion is that while a i Sl R S i i ol o
stationary electron outside a current o — o ————
carrying wire sees that wire as neutral and ' '
feels no force, when the electron outside
the current carrying wire moves in the - — U
direction of the wire electrons, it sees the
wire as positively charged. The outside U v wise's g“ﬁ\w-' )
electrpn will therefore experience an . Ceotc? ok “QS‘E\
electrical force and be attracted to the wire. _

This force is due to relativistic length
contractions.

Since the velocity v of the v i 2k ale ol Sle min 2 S ke ale ol 6
electrons in the wire is only a few - — — —
centimeters a second, the contractions are
all extremely small. But there is an AF 4
extremely large number of electrons in the -
wire, so that the increase in charge existing . '
in the frame of the moving electron is not Tictuve 1w ‘a\e.cz\'YoM
insignificant. The force on a single electron : ~auae

Ld-e()‘c\»vv\ e \‘Es'\")
aa I~ - v -
e 2 J4:
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due to a current in a nearby wire can easily -

be enough to substantially deflect the
motion of this tiny mass.

Suppose now our "outside
electron” is not alone. Let it be inside a
second wire with a vast number of
companions all moving along with it
carrying a current in that second wire. This
electron and each of its companions will
feel the same force pulling them toward the
first wire. The total force on this large
number of electrons is not necessarily
small.

By Newton’s Third Law, there
will be an equal and opposite force on the
first wire by the second. Two wires
carrying current in the same direction
will attract each other.

One can go through this whole
line of reasoning for the current in the two
wires in the opposite directions. One would
show that two wires carrying current in
opposite directions repel each other.

These relativistic forces can
actually be very large. When power
companies have two parallel wires carrying
large currents in opposite direction near
each other, the wires must be held together
by heavy steel bands.

Loops of wire carrying current
can be arranged so that strong forces arise
to make the loops rotate. That’s how
electric motors work. Our vacuum cleaners
and the heavy motors in factories work by
this relativistic effect.

A37
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These forces were, of course, known long before Einstein’s
Relativity. They are generally called "magneticforces". In the 19th Century they
were recognized as a force in addition to the ordinary electric forces between
charges arising from the motion of charge. What Einstein realized was that these
magnetic forces were actually another aspect of the electric force. This
realization, even more than experiments such as Michaelson and Morely’s, were
his major motivation in developing the Theory of Relativity. The 1905 paper
presenting the theory was entitled: "On the Electrodynamics of Moving Bodies".
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